likelihood$44673$ - vertaling naar grieks
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

likelihood$44673$ - vertaling naar grieks

PROPOSITION IN STATISTICS
Law of likelihood; Likelihood Principle

likelihood      
n. πιθανότης, πιθανότητα

Definitie

likelihood
1.
The likelihood of something happening is how likely it is to happen.
The likelihood of infection is minimal...
= probability
N-UNCOUNT: usu N of n/-ing, N that
2.
If something is a likelihood, it is likely to happen.
But the likelihood is that people would be willing to pay if they were certain that their money was going to a good cause...
= probability
N-SING
3.
If you say that something will happen in all likelihood, you mean that it will probably happen.
In all likelihood, the committee will have to interview every woman who's worked with Thomas.
= in all probability
PHRASE: PHR with cl

Wikipedia

Likelihood principle

In statistics, the likelihood principle is the proposition that, given a statistical model, all the evidence in a sample relevant to model parameters is contained in the likelihood function.

A likelihood function arises from a probability density function considered as a function of its distributional parameterization argument. For example, consider a model which gives the probability density function f X ( x | θ ) {\displaystyle \;f_{X}(x\,\vert \,\theta )\;} of observable random variable X {\displaystyle \,X\,} as a function of a parameter  θ   . {\displaystyle \,\theta ~.} Then for a specific value x {\displaystyle \,x\,} of X   , {\displaystyle \,X~,} the function L ( θ | x ) = f X ( x | θ ) {\displaystyle \,{\mathcal {L}}(\theta \,\vert \,x)=f_{X}(x\,\vert \,\theta )\;} is a likelihood function of  θ :   {\displaystyle \,\theta \;:~} it gives a measure of how "likely" any particular value of θ {\displaystyle \,\theta \,} is, if we know that X {\displaystyle \,X\,} has the value  x   . {\displaystyle \,x~.} The density function may be a density with respect to counting measure, i.e. a probability mass function.

Two likelihood functions are equivalent if one is a scalar multiple of the other. The likelihood principle is this: All information from the data that is relevant to inferences about the value of the model parameters is in the equivalence class to which the likelihood function belongs. The strong likelihood principle applies this same criterion to cases such as sequential experiments where the sample of data that is available results from applying a stopping rule to the observations earlier in the experiment.